Medical Technology Advancements in Hornell NY, 14843 -ACS Facility Services 16

Medical Technology Advancements in Hornell NY, 14843 -ACS Facility Services 16

Top 5 Advances in Medical Technology

 

 

Janitorial Services, Commercial cleaners, Commercial cleaning, Window Cleaning, carpet cleaning, medical cleaning, Odor removal, Office cleaning, Class A Office cleaning, Education Cleaning, School Cleaning, Industrial Cleaning, post construction cleaning, Cleaning services, Green Clean, ACS Facility Services, ACS, ACS Facilities

 

Go To: http:// www.acsfacilities.com/ for free articles.

 

 

As technology continues to drive the pace of progress in biomedical research and healthcare, the traditional line between engineering and medical science grows ever thinner. And as medical machines and the computers that power them become smaller, faster, and smarter, the medical device industry is making medical practice easier for doctors, more effective for patients, and cheaper for the entire healthcare system.

According to industry observers, one sweeping change is a “convergence” of consumer-focused technology into the once-rarified world of device design. As Med Device Online’s executive editor Jim Pomager recently blogged, increased life expectancy will fuel big increases in the incidence of age-related conditions such as heart disease, dementia, stroke, pulmonary disorders, and cancer. Wireless technologies capable of detecting and treating the earliest signs of disease will become front-line defenses against these leading causes of death, while devices that help patients manage their own chronic conditions more effectively will dramatically improve their quality of life while reducing the demand for more advanced treatments, he said. Consumer-friendly wearable or unobtrusive monitors comprising a range of sensors and communications devices. Pomager identified several industry collaborations between large device developers and technology companies to incorporate a wide range of medical measurements in simpler devices.

For a sense of how these trends are manifesting themselves today, here is a selective overview of five of the most talked-about directions in medical device technologies of the past year.

4) Wireless Wonders

The pulse oximeter has been one of the most widely used devices for hospital patient monitoring for decades. These compact devices typically are clipped on a patient’s fingertip to measure levels of oxygen saturation in the blood – a critical measurement for anesthetized hospital patients during surgery and intensive care for decades. The global market for these devices was on track to reach $1.3 billion in 2018, with sales of devices for home monitoring use on the uptick. For conditions such as chronic obstructive pulmonary disease, sleep apnea, and a range of cardiovascular diseases, remote monitoring of pulse oximetry measurements is a valuable way for doctors to keep in touch with their patients without the hassle of a clinic visit.

Two new wireless personal pulse oximetry devices were introduced at this year’s Consumer Electronics Show (CES) – perhaps the ideal place to observe the convergence of the healthcare and consumer tech markets. The MyOxy monitor from Bewell (Paris, France) is a Bluetooth-based device that integrates oxygen saturation with other patient measurements such as temperature and blood pressure into one smartphone or tablet app.  The MightySat from Masimo (Irvine, CA) can track a patient’s results from patients while they are in motion, reportedly a first for a fingertip oximeter designed for home use. Also incorporating Bluetooth, the device interfaces to an Apple or Android app.

Emmanuelle Charpentier (left), Jennifer Doudna, and Victor Ambros receiving the 2015 Breakthrough Prize in Life Sciences. Image: Breakthrough Prize

5) Genome Editing

The technology known as CRISPR (for clustered, regularly interspaced, short palindromic repeat) has emerged with breathtaking speed as a disruptor in the life sciences realm. It has even been called the “discovery of the century.” Many science journalists wrongly predicted the 2015 Nobel Prize in Chemistry would go to two of the scientists credited with its meteoric rise – Jennifer Doudna and Emmanuel Charpentier – only three years after their 2012 publication revealing the ease and utility of CRISPR for gene editing. The genetic sequences that give CRISPR its name are part of an immune response to bacteria. Recently scientists have found ways to use the material to block or add in specific genes to an organism’s genetic code to achieve desired results. Although the high-precision task of slicing and dicing stands of DNA is very much an engineering challenge, CRISPR is a bit out of place on this list because it is not, in and of itself, and engineered device. Still, it so significantly reduces the time and cost of gene editing that it is driving very rapid changes that will ultimately effect a wide range of engineers working in the biomedical realm. The impact of technique on science is often compared with the polymerase chain reaction (PCR) method that transformed genetic engineering 30 years ago. While PCR’s gene amplification method helped decode the human genome, CRISPR provides the real possibility of adjusting the genome to achieve desired goals: elimination of genetic diseases, eradication of pathogens, and so forth.

Fill Out Form
Call now to learn how!!!!!